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Problem statement

We are interested in solving the problem:
minimize  f(x) £ (x) + h(F(x))
X€ERN?

where ¢ : R" = R, F:R” = RP, h: R =+ R,

2 of 32



Problem statement

We are interested in solving the problem:

migei%]nize f(x) £ ¥(x) + h(F(x))

where ¥ : R" - R, F:R" - RP, h: R - R, and

> 1 is smooth with known derivatives

2 of 32



Problem statement

We are interested in solving the problem:

migei%]nize f(x) £ ¥(x) + h(F(x))

where ¥ : R" - R, F:R" - RP, h: R - R, and

» 1) is smooth with known derivatives

» h is nonsmooth, piecewise linear, and has a known structure
(cheap to evaluate)

2 of 32



Problem statement

We are interested in solving the problem:

minimize  (x) £ P(x) + h(F(x))

where ¥ : R" - R, F:R" - RP, h: R - R, and

» 1) is smooth with known derivatives

» h is nonsmooth, piecewise linear, and has a known structure
(cheap to evaluate)

» F is smooth, nonlinear, and has a relatively unknown structure
(expensive to evaluate)

2 of 32



Problem statement

We are interested in solving the problem:

minimize f(x) £ ¥(x) + h(F(x))

where ¥ : R" = R, F:R" = RP, h: RP —» R, and

» 1) is smooth with known derivatives

» h is nonsmooth, piecewise linear, and has a known structure
(cheap to evaluate)

» F is smooth, nonlinear, and has a relatively unknown structure
(expensive to evaluate)

Piecewise linear h does not imply h o F is piecewise linear.



Notes

» The manifold sampling framework does not require the availability of
the Jacobian VF.
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Notes

» The manifold sampling framework does not require the availability of
the Jacobian VF.

> Applicable both when inexact values for VF(x) are available and in the
derivative-free case, when only F(x) is available.

» We will build component models m"i of each F; around points x. We
can then use VM(x) € R™P where



Piecewise linear functions

Definition
A function h: RP — R is piecewise linear if h is continuous and there

exists a finite collection $§ = {h;:i=1,..., m} of affine functions that
map RP” into R, for which

h(z) € {h(z) : he H}, Vz € RP.

» his a continuous selection of ).
» Elements of $) are selection functions of h.
> hi:z€RP— (a;,z) + b; for each /.
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Piecewise linear functions

A function h: RP — R is piecewise linear if h is continuous and there
exists a finite collection $§ = {h;:i=1,..., m} of affine functions that
map RP” into R, for which

h(z) € {h(z) : he H}, Vz € RP.

» his a continuous selection of ).
» Elements of $) are selection functions of h.
> hi:z€RP— (a;,z) + b; for each /.

Sit{y:hly)=h(y)}, S2d(int(S)), hz)2{i:z€8},

h; for i € I(z) is an essentially active selection function for h at z.
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Essentially active
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N
Laser pulse propagating in a plasma channel

Determine plasma channel properties that minimize the maximum
difference in the laser intensity.

—‘Configu‘ration 1
— Configuration 2]|

Intensity

10 1‘0 éO 36 4‘0 5;0 60
Time
f(x) = max{Fi(x)} — min{F;(x)}
Ql QZ
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Formulation

h(F(x)) = max{sin(2x) + 1, cos(2x), x} — min {sin(2x) + 1, cos(2x), x}

5
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41

0.5

25
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A generalized derivative

The generalized Clarke subdifferential of f at x is defined as
dcf(x) = co ({5 €= lim VF(y/): y/ € D}) ,
y—=x

where co (-) denotes the convex hull.
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A generalized derivative

The generalized Clarke subdifferential of f at x is defined as
dcf(x) = co ({5 €= lim VF(y/): y/ € D}) ,
y—=x

where co (-) denotes the convex hull.

For our case:
Och(z) =co({a; : i € In(2)})

Definition

A point x is called a Clarke stationary point of f if 0 € daf(x).

i\ —
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Algorithm components

> Generator set &*
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» Generator set &*

» Smooth master model m]

» Trust-region subproblem solution s*

» Measuring decent with px
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Generator set

At some iterate x*,

e 2 ) {Ve(F) + VM(x)a}
i€lh(F(x¥))

where I,(F(x¥)) is the set of essentially active indices.
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Generator set

At some iterate x*,

e 2 ) {Ve(F) + VM(x)a}
i€lh(F(x¥))

where I,(F(x¥)) is the set of essentially active indices.

Or, given a set of points Y = {x*, y?

o 2 ) | {Ve(F)+VM(x9a}

yeY ieh(F(y))

Assumption

The set &~ satisfies

{VY(x*) + VM(x¥) a; 1 i € In(F(x¥))} € &
&  C {VY(x*) + VM(x¥)a; : y € B(x*; Ax) i € IW(F(y))} .

10 of 32



Smooth master model

Our model gradients around iterate x* satisfy
g* £ proj (0, co (6¥)) € co (&),

Let \* be the corresponding coefficients so that g = GK\*.
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Smooth master model

Our model gradients around iterate x* satisfy
g* £ proj (0, co (6¥)) € co (&),

Let \* be the corresponding coefficients so that g = GK\*.

Define

k & . .
A - ajl'“a‘Jt

and set wX = AK)\*. Define the smooth master model m[: R" — R,

P 12
mE(x) £ PR+ wEmPi(x) + > A
i=1 =1
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Trust region subproblem

Approximately solve
minimize m{(x* + s)
S

subject to: s € B(0, Ay)

to obtain a solution s satisfying

WO S (M) = W +9), ) 2 gk min { s, 1L

Kmh
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Measuring descent

» Descent is measured using some selection function h(¥) and not h
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Measuring descent

» Descent is measured using some selection function h(¥) and not h

» Must ensure information about h() is in &* before taking a step

» h(k) must satisfy

HO(F()) < hF(H)  and ARG+ 54) > h(F (K + 5)),
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Measuring descent

» Descent is measured using some selection function h(¥) and not h

» Must ensure information about h() is in &* before taking a step

» hk) must satisfy

NOF() < MF()  and  WIF(x +59)) > h(F(K +54)),

& YOK) = Pk +55) + hO(F(x)) — hI(F(x +54))

T PR TR — (et sF) + (MI(xK) — M(xF + sk, alk)
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Examples of h(K)

T
< T .l - h(K)
[}
F(x) F(x+s)
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Examples of h(¥)

3
L
< \~~_
h® 8T
F(x) F(x+s)
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Examples of h(K)

F(x) F(x+s)
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Algorithm components

Generator set &

v

v

Smooth master model m],

k

v

Trust-region subproblem solution s

v

Measuring decent with o,
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Algorithm MS4PL

Choose initial iterate x° and trust-region radius Ag > 1
for k=0,1,2,... do
Build p component models m*i that are fully linear on B(x*, Ay)
Form VM(x*) using VmFi(x¥) and construct &* C R”
Pk < —0
while py = —o0 do
Update component models m’i; build master model m’
if Ay < m||Vm'(x¥)|| (acceptability criterion) then
Approximately solve TRSP to obtain s¥
Evaluate F(x¥ + s¥) and find h(¥)
if (Vp(x¥)+ VM(x¥)alk)) € & then
| Calculate pg
else
| &% « 8% U {Vi(xF) + VM(xK) alk)}
else
| break out of while-loop; iteration is unacceptable

if px > m1 > 0 (successful iteration) then

‘ Xk+1 «— Xk + Skv Ak+1 — min{'yincAkr Amax]’
else

L XKL= x5, Appr ¢ Yaec Ak
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Generator set

At some iterate x*,

e 2 ) {VY(F) + VM(x¥)a}
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Generator set

At some iterate x*,

e 2 ) {VY(F) + VM(x¥)a}
i€lh(F(x¥))

where I,(F(x¥)) is the set of essentially active indices.

Or, given a set of points Y = {x*,y?, ..., yP} C B(x*, Ax)

o 2 ) | {Vu(F)+VM(x9a}

yeY iel(F(y))
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Convergence

» If the trust region radius Ay is a sufficiently small multiple of the master
model gradient ||gk | the iteration is guaranteed to be successful.
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Convergence

» If the trust region radius Ay is a sufficiently small multiple of the master
model gradient ||g¥||, the iteration is guaranteed to be successful.

> |imk*>00 Ak =0.

» Some subsequence of master model gradients g* goes zero.

» Zero is in the generalized Clarke subdifferential of cluster points of any
subsequence of iterates with master model gradients converging to zero.

» The same holds for cluster points of the sequence of MS4PL iterates.



Test problems

Let h be a censored Z;-loss function. Given data d € RP, censors
¢ € RP, and the mapping F : R" — RP, we define

f(x) = Zp: |di — max {Fi(x). ¢} .

That is, ¢ = 0, and

p

h(y) =Y Idi — max{y;, ¢}|.

i=1
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Test problems

Let h be a censored Z;-loss function. Given data d € RP, censors
¢ € RP, and the mapping F : R" — RP, we define

f(x) = z”: |di — max {Fi(x), ¢} .

That is, ¢ = 0, and

p

h(y) = Z |di — max{yi, i}

i=1

Define F to be the 53 vector mapping in the Mére and Wild
benchmarking set. 2 < n <12, 2 < p <45,



Test problems

Fx) =220 [di — max {Fi(x), ¢;}|

Try to define d and c to introduce many points of nondifferentiability.
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Test problems
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Test problems

f(x) = 2P, |d; — max {Fi(x), ¢}l

Try to define d and c to introduce many points of nondifferentiability.

Draw ¢; from U (4;, u;)

¢ = min {F(x°), Fi(x*)} and ui = max { F(x°), Fi(x*)} .

Make the (crude) assumption that Fi(x) ~ U(¥;, u;), then
max{c;, Fi(x)} ~ (ui — £;) *B(2,1) + ¢;.

Draw d; from this distribution for 2 </ < p.

Set ¢; = —oc and d; = 0.



Examples
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Algorithms to compare

MS4PL-1 Using manifolds at x*

MS4PL-2 Using manifolds in B(x*, Ax)
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Algorithms to compare

MS4PL-1 Using manifolds at x*

MS4PL-2 Using manifolds in B(x*, Ax)

PLC POUNDERSs using a single manifold active at x* to form
a master model

SLQP-GS Gradient sampling algorithm from Curtis

GRANSO BFGS-SQP algorithm Mitchell, Curtis, and Overton.
(Can handle constraints too.)
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Gradient sampling

Theorem (Rademacher)

IfS CR" isopen and f : S — R is locally Lipschitz on S, then f is
differentiable almost everywhere on S.
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-
Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x¥, €x). Set

& = conv {VF(x*1),..., Vi (xm)}

29 of 32



N
Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x¥, €x). Set

& = conv {VF(x*1),..., Vi (xm)}

2. Set £X to be the minimum norm element in &X.

29 of 32



N
Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x¥, €x). Set

& = conv {VF(x*1),..., Vi (xm)}

2. Set £ to be the minimum norm element in &,
3. Set ay to be the smallest power s of v € (0, 1) satisfying

FOxXK+°€) < F(x¥) — By ||€¥]]

29 of 32



Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x*, €x). Set

& = conv {VF(x*1),..., VE(x<m}

2. Set £ to be the minimum norm element in &,

3. Set ay to be the smallest power s of v € (0, 1) satisfying
F(x* +7°%) < F(xF) — Br® ||€¥|

4. 1f VI(xK 4+ apék) exists, x 1 = xk 4 a k.
Else, find a point in & € B(x¥, ¢x) satisfying

XK+ 7€) < F(x¥) — Ba |||

and set x*T1 = &K 4+ o £k,



Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x*, €x). Set

& = conv {VF(x*1),..., VE(x<m}

2. Set £ to be the minimum norm element in &,

3. Set ay to be the smallest power s of v € (0, 1) satisfying
F(x* +7°%) < F(xF) — Br® ||€¥|

4. 1f VI(xK 4+ apék) exists, x 1 = xk 4 a k.
Else, find a point in & € B(x¥, ¢x) satisfying

RN +°€F) < F(xX*) — Bouc || €|
and set x*T1 = &K 4+ o £k,

» lterates must not be points of nondifferentiability



Gradient sampling
1. Approximate 8f(x*) by sampling m > n+ 1 points x*/ in B(x*, €x). Set

& = conv {VF(x*1),..., VE(x<m}

2. Set £ to be the minimum norm element in &,

3. Set ay to be the smallest power s of v € (0, 1) satisfying
F(x* +7°%) < F(xF) — Br® ||€¥|

4. 1f VI(xK 4+ apék) exists, x 1 = xk 4 a k.
Else, find a point in & € B(x¥, ¢x) satisfying

RN +°€F) < F(xX*) — Bouc || €|
and set x*T1 = &K 4+ o £k,

» lterates must not be points of nondifferentiability

» Significant sampling may be required



Tests

f test A method s solves a problem p to a level T after j
function evaluations if

F(x0) = F(x) = (1 = 7)(F(x°) = F,)
x0 is the problem’s starting point, and ?p is the
best-found function value.
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Tests

f test A method s solves a problem p to a level T after j
function evaluations if

F(x0) = F(x) = (1 = 7)(F(x°) = F,)
x° is the problem’s starting point, and ?p is the
best-found function value.

Ocf test Sample gradients.

Draw 30 points uniformly from B(x/, 10~8) for each point
x/ evaluated by each method.

s solves p to a level T after j function evaluations if
|11 < 7 [|&°]



Data profiles
f-test, 7 = 1072

o
)
T

o
'S
T
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Fraction of problems
o [=]
w (6,
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0.2 =@~ MS4PL-2 |
-A-PLC
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Function evaluations divided by (np+1)
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Data profiles
Ocf-test, T = 1073

o
o
:

o
'S
T

Fraction of problems
o o
w (6,

—8— MS4PL-1
0.2, =0= MS4PL-2 |
-A-PLC
0.1 —¥— SLQP-GS]]|
GRANSO

100 200 /300 400 500
Function evaluations divided by (np+1)
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Data profiles
Ocf-test, T = 1078
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Function evaluations divided by (np+1)
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When optimizing functions of the form h(F(x)) when
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» F is “hard”

it can be advantageous to model F; and then combine those models via
known information about h.



Conclusions

When optimizing functions of the form h(F(x)) when
> his “easy”
> Fis “hard”

it can be advantageous to model F; and then combine those models via
known information about h.

Email jmlarson®@anl.gov for a preprint.

Thank you!



